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ABSTRACT

The probability function of degree days below the base 65°
Standard statistical analysis is applied to this function to obtain the relationship between mean degree

funection.

F. is derived from the temperature probability

days and mean temperature. This relationship is modified for use with available data and applied in the conversion

INTRCDUCTION

Almost from the time that heating degree days first
came into use there has been a need for & rational relation-
ship between temperature and degree-day statistics. The
“lack of such a relationship has always made it necessary
- to estimate degree-day means or normals from degree-day
' records which were often not available and tedious to com-~
pile. Temperature means, on the other hand, are already
 available for most stations and if not, are easy to compute
from published data. Such a relationship makes degree-
3. day statistics quickly available from any place with a
temperature record. It also removes the difficulties asso-
ciated with the lack of consistency between temperature
and degree-day means which has been troublesome in the
past. This has made it difficult to adjust degree-dey
means for a heterogeneous record. In the recent normals
revision program of the Weather Bureau, for example, the
usual arithmetical procedures could not be applied to
obtain degree-day normals because of the numercus
- heterogeneities in the records at most stations. With a
- rational conversion formula available, properly adjusted
- temperature normals may be converted directly to degree-
_day normals with uniform consistency. More important
 than this use, perhaps, is the fact that the rational relation-
. ship is basic to the full development of the climatological
- analysis of degree-day data. AR

T Paper presented at 127th Nattona! 2

: New York, N. Y., January 28,-1054.

festing of the Amarican Meteorological Bocisty,

of & monthly normal temperature for Detroit to the corresponding degree day normal.

The study reported here is another phase [1] in the
development of a general climatological analysis for de-
gree days below a given base. 'With proper modification
it may also be employed in the analysis of dégree days
above any base. The probability function of degree days
derived here from the temperature distribution will form
the basis for the later development of methods for obtain-
ing degree-day probabilities. : C

THE TEMPERATURE FREQUENCY CURVE

- In & previous paper [1] it was observed that the average
temperatures of a particular day through a series of years
have been found to have a normal probability or-frequency
function, or to be normally distributed. ~ This probability
function describes bell-shaped curves like those shown in
figure 1 which are normal frequency curves on temperature
scale £. = - P :

A normal probability function is known to be completely
specified by its mean and standard deviation. - The mean
gérves to locate the curve along the ¢ axis whila the stand-
ard deviation o determines its scale, or how widely it'is

spread along-the ¢-sxis. - In figure ¥ it is seen that-hoth

frequency curves are located by & mean temperatuie of

60° F. but have different scales or standard dévistions:
The curve with & standard deviation of 5 ‘spread out

widely along the ¢ axis.whilé the curve’ with & standied
deviation of 2.5 is more closely ‘concontrated.- about ‘the v

mean. Lo
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Ficure 1—Two examples of nornal frequency curves, ons for e=5.0, the other for
e=2,5, both with mean tempertures of 60° F. Both the temperature scals ¢ and its
transformation by equation (1) to ths degroe-<lay scals D, are shown, Ast is trans-
formed te 1, the distribution of {1a translormex Into the degroo-day distribation, This
18 tho unshaded portlon under the temperature frequency eurve distribated over the D
Boale logrther with an ares of probability soryeaponding to tho sheded portion concen-
trated at 1oro degree days. The entire distribution of degree days may be represented
by the frequency cirves shown In figure 2,

It is clear that as a result of these properties two changes
may occur in the normal curve and hence in the distribu-
tion of temperature: (1) The mean may shift and move
the curve to the left or right along the ¢ axis, giving a
location at o different value of 2.  (2) The scale or stand-
ard deviation may change causing the curve to sproad out
or become thinner, These changes are not statistically
independent of each other but may be considered as
separate component properties. An examplo of the first
type of change is to move the curve o=2.5 to the left
two degrees of temparature, giving it a new mean of 58°
but leaving the scale ¢ unchanged. The second type of
change is represented in figure 1 by a chango in scale from
a==2.5 to ¢=5.0. This spreads the frequency curve
without change in its location or mean. Also both types
of change could occur together, giving & curve which is
spread out as well as displaced along the ¢ scale.

While the discussion of location and scale changes as
climatic factors is & subject in itself, it will assist in our
explanation of the degree-day distribution to have some
understanding of climatic location and scale changes in
the temperature distribution, The general principle ob-
served over & wide range of climatic conditions is that
the location of the temperature distribution increases as
the scale decreases and conversely. This is in contrast
to bounded elements such as precipitation where the lo-
cation, as measured by the mean, varies directly as the
scale. Since the location of the temperature distribution
varies seasonslly, es well as climatically, such variations
are reflected in the seasonal march at a given station as
well as from station to station for the same season.

. The location and scsle of the temperature distribution
are best measured by the mean and standard deviation of
the distribution. These parameters can therefore be re-
lated through the general principle. Although the varia=
tion of mean temperature with geographic position is not
precise, there is, of course, a very marked tendency for it
- to decrease with increasing distance from the equator.

i 'mx.'mmzaium'uﬂ

MONTHLY WEATHER REVIEW Janvary 1954 3

Since the mean and standard deviation vary inversely,
the standard deviation increases with increasing distance 3
from the equator. In general then, the mean decreases
with latitude while the standard deviation increases with 3
latitude. Similarly in seasonal variation the mean is Z
higher in summer and lower in winter and hence thestand- 3
ard deviation is lower in summer and higher in winter, 3
Large bodies of water have a great effect on the relation 3
between location and scale of the temperature distribu-
tion, The pronounced effects of decreasing the rate of :
change of mean temperature with latitude and the nar- 2
rowing of the range between summer and winter are well
known. The effect on the standard deviation is even
more pronounced. As a consequence, standard devia-
tions are stabilized over extended areas along seacoasts
and through the seasons in such sreas. For example, the
standard deviation for January along the east coast of ;
the United States is almost uniform from Maine to .
Florida while in the interior it is three times larger in
Minnesota than in Louisiana. Seasonal variation in the
standard deviation is also smaller along the coasts, some
stations having nearly the same standard deviation the
year around. This occurs particularly along the west =%
coast where the effect is more pronounced because of the 3
prevailing winds off the ocean. 2

THE DEGREE-DAY FREQUENCY CURVE

These location and scale changes in the temperature 5
frequency distribution produce corresponding changes in

alilt
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D=65—t, D>0 (1)

where D is the degree-day value for a day and ¢ is the
day's average temperature in ° F. The inequality on
the right is especially to be noted for it is an essential
feature of the transformation which converts the ¢ scale
to the D scale of figure 1. As ¢ is transformed to D, the

to the relation between temperature and degree-da:
statistics. Such varistions may be interpretedeig; termg, &

of t!xe location and scale changes discussed sbove, g

Since thev degree-day base is fixed at §5° F., all location g
and scale changes oceur in relation to it. With fixed
scale or standard deviation, shifts in the mean 'produce'g -

2
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important changes in the size of the shaded area. As the
mean temperature increases, the temperature frequency
curve moves toward the right and the shaded area of the
curve is increased while the unshaded ares is decreased.
This produces an increase in the probability of zero degree
days and both a decrease in probability of degree days
and an increased concentration of the probability at the
lower degree-day values. The overall effect is to decrease
the mean degree days. For a decrease in mean tempera-
ture the shaded portion of the curve decresses while the
unshaded portion increases. This produces a decrease in
the probability of zero degree days and an increased con-
centration of probability at higher degree days with a
consequent increase in degree days. As the temperature
mean moves to low values on the left, the amount of
shaded area becomes negligible and the degree-day mean
approaches 65— E(f) where E(f) is the mean temperature.
Thus, as has long been known, the degree-day mean
increases as the temperature decreases and at low values
is & function of the mean temperature alone. At higher
values of mean temperature the shaded area becomes
important and must be accounted for through use of both
the mean and standard deviation since the size of the
shaded ares is a function of both parameters.

Variations in the degree-day mean produced by varying
the temperature scale or standard deviation are not as
easily depicted as those resulting from variation in the
mesn. With a fixed mean temperature, an increase in
standard deviation increases the probability of zero degree
days but also spreads the distribution to higher degree
days. These changes have opposite effects on the degree-
day mean so the effect of scale change is not a simple one
and must be accounted for by an analytical relationship.
Nevertheless, it is clear that changes in the temperature
scale produce marked changes in the degree-day mean
and hence must be accounted for in any relationship
between degree days and temperature. As will be seen
later, the scale or standard devistion is an important
vannble in the rational relationship.

THE PROBABILITY FUNCTION OF DEGREE DAYS

From the previous discussion it appears that the prob-
ability or frequency function of degree days comsists of
the portion of the temperature frequency curve below
65° and a probability concentrated’ at zero degree days
equal to the probabl.hty of temperatures being above 65°,
The former is the unshaded portion of the temperature
frequency while the latter is equal to the shaded portion
of the curve but concentrated at zero degree days. The
unshaded portions of the frequency curves are truncated
normal distributions which, when compounded with the
probability densities at zero degree days, form ‘mixed
distributions which are the degree-day distributions. In
sampling from such & distribution for a day on which

zero degree days may occur,. that day will have degree

days greater than zero with a probability equal to the

‘ig the probability of zero degree days.
'@ is equal to p plus the probability of temperatufe being - -

MONTHLY WEATHER REVIEW 3

400

300

00 &

000 1 i A I i I} F) 2 1 1 1 L ]
4 44 46 486 B0 @ B4 55 S50 0 6f &4 €6 €6 0 172 74 T IO
1 ~Temperature {*F)
22 EO 8 W K 2 10 ® & 4 2 ©
D - Degree Doys

Fi16URE 2—Repressntation of the entlre distribation of degres days, D, for two exsmplhes,
oorresponding to the two tempaorature frequency curves of figure 1 for which the stand-
ard deviations of temperature are 5.0 and 2.5, respectively, and mean tamperature is
60° F. Note the area of probability, p, concantrated at xero degree days,

unshaded area of the frequency curve and zero degree
days with a probability equal to the shaded portion of
the curve, When degree-day values are greater than
zero they will be further distributed according to the
truncated probability function, the unshaded portion of
the curve. They are not further distributed in the shaded
portion of the curve, for here they always take the value
zero.

The truncated normal distribution has been tharoughly
investigated by several statisticians and most: of the
results wo need have been reported in the litersture (see
[2, 3, 4, and 5]). There remains only to adapt the theory
to cover the mixed distribution described above. :

Let F(¢) be the normal distribution function of the
average temperature for & day defined by

]

Fo=[_s@as @
where f(z) is the normal probability function as shown in
figure 1. Evidently F(¢) is the probability that an aver-
age temperature is less than ¢, and hence the probability
that the average temperature is above the degree-day
base is p=1—F(65) and below the base is g=F(85).
Performing the transformation to degree days by equation
(L), the distribution of degree days is

@(D|D 20) =p-+gF(65—1|t <65) (3)
where @ gives the probability of less than D degree days
and Fis the normal distribution truncated at 65° (c. £. [2]).
It will be noted that G(0)=p which is the probability of
the average temperature being 65° or greater, and hence
When, D20,

between 65° and some assigned-lower value.- :
The probablhty ﬁmcmon for degree days is the: denva-
tive of (3) whlch is :

(D]D> 0) —-—gf(65—tlt<65)

B it
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This function is the equation of the unshaded portions
of the curves in figure 1 referred to the D scale and is
réquired in obtaining the mean value of D. The entire
distribution may be represented by the frequency curves
shown in figure 2.

THE RATIONAL RELATIONSHIP

. The expected or mean value of dégree days is defined
1 the usual manner by

ED)= J; Dg(DydD. ®)
~App.lying this operation to the right hand side of equation
(4) it is found that {2, 3] '
E\D)=q[65— E(t)+\o]. (6)
He:re Z'(¢) is the mean temperature, ¢ is the standard
‘deviation [1], and A=F(65)/¥(65). ‘Tables of the recip-
-’r‘opal_of t.}:us function have been prepared by Pearson [4].

MONTHLY ‘WEATHER REVIEW
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Assuming that ¢ is normally distributed, (6) is the exact J#&

relationship between mean temperature and mean degree
days. Since E(t) and ¢ completely define the normal §;

distribution which in turn determines q and N the mean | =

value of D is easily found when E(f) and o are known.

Values of F and f are given as functions of the argument | i

(t—E(t))/s in any table of the normal probability function.

g and \ are evaluated at =65 and for convenience we e

designate (65—E(t))/o as h.

For ¢=5.0 and E({t)=60 as shown in figure 1, it is seen i : |

that the base 65 is one standard deviation above the

mean so, from tables of the normal distribution, g=0.841 §
Hence the degree-day mean | ¥l

and A==0.242/0.841=0.288,
for a day with ¢=>5.0 and E(t)=60 is

E(D)==.841[65—60-} (0.288)5]=>5.4.
APPLICATION OF THE RATIONAL RELATIONSHIP

The rational relationship applies to the means of daily
degree days. However ourinterest is primarily in monthly
means go the relationship will be adjusted to give these di-

- LB

-~ -
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Piavns 3.—The empirical rolationship of Z va, k. The dots are obsrved value of § sealost &,
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rectly. A simple way of doing this is to determine the
relationship for s hypothetical average day of the month
and multiply the resulting degree days by the number of
days in the month. This average day is not a real day
on which any particular average occurs, but a hypothetical
day whose mean and standard deviation are such that when
the conversion is made to degree days and the result multi-
plied by the number of days in the month the result is the
mean degree days for the month.

In adjusting the relationship to obtain monthly statis-
tics it was found convenient to use the standard deviation
of monthly average temperature which is a function of the
daily standard deviation and much easier to obtain. If ¢

v- ¥ is the standard deviation for the average day as above,

om the standard deviation of the monthly average, and r
the mean correlation between all days for a month of N
days, it may be shown [5] that .

VNv — \}T f.i‘ﬁ“:‘_r;.
1+(N—Dr o

Since the factor (1-+Nr) is not known but does not seem
to vary greatly from station to station, we let it be ac-
counted for in the overall proportional adjustment to the
rational relationship by assuming

o=y/No. (7

Since o for a single day is known only proportionally,
g, which is a function of k, will also be known only pro-
portionally. The approximation we need may be ob-
tained by rearranging the rational relationship (6) in the
form

_ED)(1—q)_ED)—65+E()

o q a

-

®

A

Substituting yNe, for o and I for the term on the left, we
find
Z=E(D)—65+E(t)
‘\Wﬁ"

Since all of the variables in (8) are functions of h, 1 will also
be a function of h. Solving (9) for NE(D), the mean
xnonthly degree days, gives

NE(D)=N(65~E() +1/No,,).
Next, [ can be established as a function of & by plotting

)

(10)

-4 observed values of ! against h. These values were com-
4. Pputed from 30-year records at 30 stations representing all
3  <limatic conditions in the United States.

The data which

moted that the relationship is independent of climate and

: Season and is only dependent on the parameters of ths
- Gemperature frequency distribution. In this respect the I
“ Tunction is general, like the A-function, in that it is also
dependent only on k. It is also similar in shape to the
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TaBLE }.—The factors h and 1, for use in computing degree days from
. equation (10) R
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Munction and has analogous limiting properties, e. g.,
{=—h forlarge values of —k, and /=0 for A2 0.78. Values
read from figure 3 have been entered in table 1 for con-
venience in use.

In order to use (10) to compute normal monthly degree
days, a set of manuscript charts has been prepared showing
isolines of monthly standard deviations, s,. Using the
appropriate value of 8, and the normal value of the tem-
perature, f, as estimates of o, and E(}), h may be readily
calculated. " Entering the table or graph with this value
of b one finds the proper value of I. Substituting this
together with 7 and &,, in (10) and multiplying by N, the
number of days in the month, gives the degree-day normal
ND a statistical estimate of NE(D).

As an example, for September at Detroit we find the
normal temperature {=64.3 and the standard devistion
8,=2.7. Then k is essily found to be (65—64.3)/
(5.48)(2.7)=0.047. For this value of A table 1 gives
1=0.17 and bence Nis,=(5.48)(2.7)(0.17)=2.51. Sub-
stituting in (10) gives

ND=30(65—64.3+2.51)=96
This is Detroit’s degree-dey normal for September.. - = -
1. H. C. S. Thom, “Seasonal Degree-day Statistics for the.

United . States”, Monthly Weather Review, vol. 80,
No. 9, Sept. 1952, pp. 143-149. ’
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2. Harold Cramér, Mathematical Methods of Statistics, 4. Karl Pearson (Editor), Tables for Statisticians and £ s
Princeton University Press, Princeton, 1946, pp. Biomeiricians, Part II, Cambridge University Press, =

- 247248, ] London, 1931, pp. xxx and 11.
3. R. A. Fisher, “Sampling Error of Estimated Deviates”, . . 1
ete., British Association, Mathematical Tables, vol. 1, 5. John F. Kenney, Mathematics of Statistics, Part II, 3.
1931, p. xxxiii. D. Van Nostrand Co., New York, N. Y. 1939, p. 101.
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NORMAL DEGREE DAYS ABOVE ANY BASE BY THE UNIVERSAL
TRUNCATION COEFFICIENT

H. C. 5, THOM

Environmental Data Setvice, Environmental Science Services Administration, Washington, D.C.

ABSTRACT

Equations are developed for obtaining mean monthly degree days above any base from mean monthly tem-
perature and standard deviation of monthly average temperature. By the use of data for all months for twelve
widely scattered stations and four bases it is shown that the truncation coefficient for degree days below any base
with proper modification of the argument also applies for degree days above any base. This is also proved analyti-
cally, which leads to some further aspects of the universality of the truncation coefficient. Two formulas for the

coefficient are also developed.

1. INTRODUCTION

The study reported here is the third phase in the
development of the general climatological analysis of
degree days [1], [2], [3]. Reference [2] established the
rational relationship between mean monthly degree days
below 65° F. and temperature and gave a table of the
truncation coefficient [. Reference [3] showed that the
rationa) relationship also applied to mean monthly degree
days below any base using the same table of l. Later it
was noted [4] that a slightly modified relationship using
the same table of ! also gave mean monthly degree days
above any base. Thus the table of the truncation coeffi-
cient proved to be universal, applying to mean monthly
degree days below or above any base. The evidence for
the final steps in establishing universality has never been
given although the method has been used extensively in
this country and Canade [5], [6]. It is the purpose of
this paper to give this evidence as well as an analytical
form for the universal truncation coefficient useful in
computer applications.

Degree days above particular bases, although not as
yet used as extensively as degree days below a base, are
of growing importance in horticulture and in air condi-
tioning requirements and power consumption estimations.
Horticulturists use bases ordinarily between 40° and
50° F. in systems for estimating growth progress and
harvest dates. The literature on this application is
extensive, of which reference [5] is a good example.
Application to air conditioning requirement and power
consumption has been much less extensive and even less
hasbeen published. The key paper is the one by Marston
(6. Indications are that there will be an increase in the
use of degree days in this area.

2. DISTRIBUTION FUNCTION AND EXPECTED VALUE

It was shown previously that the degree day distribution
describes & mixed population of degree day values equal

to zero and greater than zero. This arises from the defi-
nition of the degree day; a particular value of which is
the number of degrees of temperature above (or below)
a fixed base temperature. Thus the temperature distri-
bution truncated at the base temperature transformed to
degree days, the continuous part of the distribution, and
the truncated portion, the probability of zero degree days,
form the mixed distribution of degree days. For degree
days above a given base b the transformation from
temperature to degree days is

D=t—b; (Dz0). 1)

where £ is ordinarily the average temperature for & day.
The truncated probability density function for

temperature may be expressed by
o _ Jw
[ swa O

where F is the distribution function of ¢, and the prob-
ability density function has the value given by (2) on the
interval b<t<w=, and zero elsewhere. If the transfor-
mation (1) is applied to equation (2) in the usual fashion,
the result is the probability density function of degree

days
f&+D) dt _f(b+D)
9OD20)=1"F@y dD~ 1—F®)

felb<t= @

3

Integrating this over the open interval 0<{D<® gives
the distribution function of degree days greater than

zero
O F(o+D)—F(b
GOIP>0=—37 | 7+ Dyap="EEDTE.

(4)
Multiplying by 1—F(b) and adding F(b) gives the desired

distribution function on the closed interval 05D< =,
ie., including the zero values of degree days.

¥
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As in the first work on the rational relationship between
degree days and temperature the analysis is performed
on a hypothetical middle day of & month. The average
temperature on this day is assumed to have a normal
distribution whose mean and standard deviation are such
that when the conversion is made to degree days, and the
result multiplied by the number of days in the month,
the result is the mean degree days for the month [2],
The normal probability density function is designated by
¢ and the distribution function by &.

Let the standsrdized variable of temperature be
2=[t—E({)]/oc where E(t) and o are the population mean
and standard deviation and the truncation point is z,.
Then the probability density function for the truncated
normal distribution according to equation (2) may be
expressed as

o(z|2<2) =71.2—7—r =P f11—8(zq) . (5)
Hence the mean of this distribution is given by
(2|20 2) = s " e lde. (6)

1/2;[1"‘4’(20)] o

To evaluate the integral it is only necessary to make the
substitutions u=—2*/2 and dz=—du/z whence

2
— [evdu=— ev= — =P

Substitution in (6) and evaluation of the integral between
2 and = yields the reciprocal Mill's ratio

e~ i @ (20)

E(2]|2<2) T =5G0] 1_@(20)=M(Zo) M

where the inferior star indicates truncation on the left
of the distribution. To return to the wariable ¢ it is
only necessary to take the mean of t=z-+ E(f) over the
truncated distribution giving

EQb<t)=cE(2]2:<2) +E(t) (8)
which on substituting (7) yields
E(t[b<t)=ahy(z0)+ E(1). 9)

The mean number of degree days greater than zero is
found by taking the expected value of D=¢{—b, giving
E(D|D<0)=E(t|b<t)—b which on substitution of equa-
tion (9) gives

E(D|D>0)=0ny(20)+E (1) —b. (10)

The mean of degree days for the mixed population of
zero and non-zero degree days is the weighted mean of
these components or

- E(D|D20)=%(z0) -0+[1—2(20) IE(D|D>0).

MONTHLY WEATHER REVIEW
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Substituting from (10) gives

EDID20)=[1—%(z)l[oMs (2 +E@®H)—b] (1))
which is the theoretical relationship between mesn
temperature and degree days for a middle day with mesn
E(t) and standard deviation 0. Unfortunately, estimates
of o and therefore of z, are not available; so, as for degree
days below a base [2], an approximation of o must be
employed.

3. GENERAL DEGREE DAY FORMULA

With « unavailable it is necessary to make some adjust-
ment to equation (11) which makes computation possible.
The most suitable procedure was found to be to follow
the method used for degree days below a base, ie., to
solve as much as possible for \,(z,) and associated func-
tions of 2, which are not known.

Rearranging the terms in equation (11) and writing
E(D) for E(D|D2 0) yields

O

() (12

:I:E(D)—-[E(t)-—-b].

a

As with degree days below & base, the left hand side is
set equal to a new truncation coefficient A, after a modi-
fication of the right hand side to take care of the fact
that no direct estimate is available for o. Let oy be the
standard deviation of monthly average temperature and
? the mean correlation between all possible pairs of N
days of a month; then

a=\Non/[1+(N—1)7]"~. (13)

The factor [1+(N—1)p]¥* is unknown because 7 is
unknown, but call it k£ nevertheless so (13) becomes

o=+ Nan/k. (14)

In order to standardize the argument on which Ay is
dependent, E(t), b, and +/No,, are combined into & single
term to make the standardized truncation point

—2y={—b)/(VNoy). (15)

This was —4& of the previous paper [2]. Now sinee k is
unknown, replace o on the right of (12) by vNo, and let
the factor £ divide the term on the left. Finally replace
the left hand term by A« (z) so that

ED)—[E({)—b],
Wﬂm

This is the population value of the truncation coefficient
for degree days above a base b. Solving for E(D) and
multiplying by N to get the monthly mean degree days
above b gives

NE(D)=N[A(z))VNon+E(t)—b].

As(zo)= (16)

(17)

7
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F1GURE 1.—~1 vs. 1, data for various bases. The l-curve for degrec days below 65° F. is superimposed on data for above various bases to
show universality of the l-curve.

The sample estimates of these two equations are

z*(zo)i:ﬂ%f—”-) (18)
and _ " _
ND=N/lx(xo) VN 8m+1t—b]. (19)

It was now immediately comjectured that [ plotted
against —2 or —A would produce an / curve independent
of the base and identical with the ! curve previously
established for degree days below any base [3].

To show the universality of the truncation coefficient
Ly, values were computed using equation (17) on degree
day means above four bases for all months having degree
days at 12 widely scattered stations. These are shown
plotted against —a, in figure 1. The l-curve established
for degree days below 65° F. [2] and found to hold for

degree days below any base [3] was then superimposed
on the data for the four bases in figure 1. The fit is
equally as good as found for degree days below a base.
This completes the empirical demonstration of the
universality of the truncation coefficient for mean
monthly degree days sbove or below any base. The
demonstration will be made anslytically in the next
section.

Tt is clear from the above that if the previous A is set
equal to 1, representing the truncation coeflicient for
degrees below a base as [*(z) then empirically at least

INENE A (—zp). (20)
Substituting in (19) gives
ND=NII*(—x3) VNem+1—b]. (21)

/0
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Writing D for degree days above a base and D for degree
days below a base generalizes (21) to

ND“=NUI*(F2)) VNsmt (—b)]
which covers all situations.

4. UNIVERSAL TRUNCATION COEFFICIENT

In this section A* and A, are always a function of =,
and \* and A, is still a function of z,.

For degree days above a base there are two expressions
for E(D) given by equation (11) and an inversion of (16).
This gives

AW Nont (E@)—b) = (1—) Mo+ (EE)—D)]-

Dividing by VNon, substituting the value of k from
equation (14), and rearranging terms yield finally

A= (1—B) (k) 12z,

(22)

23

29

For degree days below a base [2] there are analogous
expressions for E(D) which when set equal give

A*VNop—(E[t)—b)=2\*s—(E(®)—b)).  (25)

Again dividing by vNo,, etc., as above, yields finally
AF =8 (/b — (1—B)z,. (26)

_If equations (23) and (25) are divided by o instead of
vNo,, using, of course, z=[b— E(t)]/s and manipulations
similar to those above, there results

Ay =[(1—®)\, +B2,)/k 27
and

A*=[BN*—(1—®) zo)/k. (28)

Setting the value of A« from (24) equal to that of (28) gives

zo=Kkzo (29)
which is also clear from the definitions of 2, and 2.

The basic equations (24) and (26) may be transformed by
recalling that \*=g¢/® and M\ =gp/({—®). Substituting
yields

Ar=plk—(1—®)z, (30)

(31)

Since ¢(—a) = (zo), ¢ is not affected by a change of
sign of its argument. It is noted from equation (29) that
k must also be an even function of z, thus the first terms
of (30) and (31) are not affected by & change in sign of
z,. Returning for the moment to explicit expressions for
A*(z,) and ®(z,) and substituting —z, for z,in (31) yield

A (—zo) =plk—[1—(—20)}(—20)- (32)

and
Av=olk+®20.

Recalling that ®(—2;)=1—=&(z,) and making this sub-~-

‘stitution in (32) give
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A¥(—z0) =o/l-+ &z, (33)

But this is identical with (31); hence
A*(—20)=Ax(z0) (34)

which demonstrates the universality of the truncation
coefficient. Starting from equation (31) and following
similar operations give

Au(—0) = A*(zo)- (35)

There are a number of other symmetrical relations which
are interesting: Subtracting equation (30) from equation
(33) yields the relation

A¥(—z0) — A * () =20 (36)
Likewise, following similar operations or simply substi-
tuting (34) and (35) in (36) gives

Ag (20) ""A*('—'J:o) =To. (37)
These relations indicate the fundamental properties of the
truncation function which assist in establishing its an-
alytical form.

5. ANALYTICAL FORMS OF THE TRUNCATION CURVE

The truncation curve is not a very simple function as
can be seen from the previous development. Since for
practical applications it need only be known to two sig-
nificant figures, it seemed reasonable to fit a curve to the
I-table given in [2] taking into account the symmetry
properties of the previous section.

None of the functional forms related to Mill’s ratio
proved to be of much help. Finally, it was found that
the sum of two exponentials gave a very satisfactory re-
sult. Fitting to the original I-table gave the following
pair of equations:

1¥(20) =0.34¢+ 0—0.15¢ 750 (38)
and by (36)
1# (—xq) =1* (o) + 0.

These equations smoothed the I-table slightly. Depar-
tures from the unsmoothed table are not greater than 0.01.

Tt appeared to be of interest to relate the truncation
function to Mill’s ratio. It is necessary now to use z, as
the independent variable for all functions. Solving
equation (30) for k yields

o(Z0)

k(zg)= A¥ (o) +[1—8(z0) Izo

(39)
Recalling that ¢(z;) is an even function and substituting
—iy for 2, give )

o(Zo)
k(=20 = Sy F %@

(40)

(]
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Mill's ratio is defined for this purpose as
B (o) =[1—8(z0) ) (o) (41)

Solving for [1—®(x)] and substituting in (39) give

(o)
A* @)+ o(zo) B (o) zo (42)

S_ince it is required to fit k(z;) for both positive and nega-
tive values of %, it is necessary to have a formula for

k'(—i'dro)- Solving (41) for ®(x,) and substituting in (40)
yie

k (zg)=

<P($Eo) ( 43)

"("“’):A*(—zo)+¢($0)R(""°) —1

A series of values of I*(x,) and I*(—ay), Zo=h, for each
tenth between 1.00 and —2.00 was obtained from the
l-table of [2]. Values of ¢(z,) and R(z) were found in
tables IT and III in reference [7). When these values are
substituted in equations (42) and (43) a series of k(z)
values is obtained. Note that the positive value of 2, is
always used in R(x,).

Examination of equations (13) and (14) suggests that
it might be more interesting to determine the equation
for k* instead of k since k?=1+4(N—1)5. The series of
values obtained from equations (42) and (43) were there-
fore squared before being fitted as a function of =,

After a new series was formed by subtracting one from
each k* a functional form F?—1=y=a cos® § was intui-
tively suggested. If tan 6=z, #=tan™' x, for z=—2.0,
—1.0, and 0, 6=—1.11, —0.785, and 0 radians, hence
cos §=0.4474, 0.7071, and 1. Since k2—1 is about 3.410
at 6=0.785 radians, 1.326=3.410(0.7071)" and n=2.73.
(This will incidentally be very close to the final value.)
An approximation to the equation is then y=3.410 cos*™ 4.
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On substituting 6=tan™ z, and by simple trigonometry
we find y=3.410[1-+2]"%. The general form of the
equation is then

B —1=q[1+z2]™ (44)

The logarithmic form of this was fitted by least squares
giving finally
B (z0) =14-3.44(1 4-23) "%, (45)

The fit of this to the /-table was very good, for the correla-
tion between the logarithms was r2=0.9897, leaving only
about 1 percent of the variance unexplained by equation
(45). With the k-function in analytical form a second
method of computing I* using Mill’s ratio is available.
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